Fluid-like elastic response of superionic NH3 in Uranus and Neptune
H2O and NH3 are highly abundant in mantles of ice giant planets and may exist in the superionic state. Our Brillouin study suggest a new superionic phase for NH3 with comparable velocity to that of the liquid. It suggests that superionic NH3 is nonviscous and thus cannot contribute to the internal stratification and magnetic fields in icy planets.
Nondipolar magnetic fields exhibited at Uranus and Neptune may be derived from a unique geometry of their icy mantle with a thin convective layer on top of a stratified nonconvective layer. The presence of superionic H2O and NH3 has been thought as an explanation to stabilize such nonconvective regions. However, a lack of experimental data on the physical properties of those superionic phases has prevented the clarification of this matter. Here, our Brillouin measurements for NH3 show a two-stage reduction in longitudinal wave velocity (Vp) by ∼9% and ∼20% relative to the molecular solid in the temperature range of 1,500 K and 2,000 K above 47 GPa. While the first Vp reduction observed at the boundary to the superionic α phase was most likely due to the onset of the hydrogen diffusion, the further one was likely attributed to the transition to another superionic phase, denoted γ phase, exhibiting the higher diffusivity. The reduction rate of Vp in the superionic γ phase, comparable to that of the liquid, implies that this phase elastically behaves almost like a liquid. Our measurements show that superionic NH3 becomes convective and cannot contribute to the internal stratification.
Further information from the external page journal and ETH News.